Donc le vecteur A B → \overrightarrow{AB} est égal à la somme A F → + A I → \overrightarrow{AF} + \overrightarrow{AI}. Le vecteur D C → \overrightarrow{DC} a la même direction, le même sens et la même norme que le vecteur A B → \overrightarrow{AB}, il est donc lui-aussi égal à la somme A F → + A I → \overrightarrow{AF} + \overrightarrow{AI}.

  1. Lecon vecteur 1ères rencontres

Lecon Vecteur 1Ères Rencontres

Soient A le point de coordonnées A\left(-5; 1\right) et les points B et C tels que \overrightarrow{BC}=\overrightarrow{OA}. Les coordonnées de \overrightarrow{BC} sont celles de A. Donc, les coordonnées de \overrightarrow{BC} sont (-5; 1). II Les vecteurs colinéaires Vecteurs colinéaires (1) Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement s'il existe un réel k tel que: \overrightarrow{u} = k \overrightarrow{v} Sur la figure ci-dessus, B est le milieu de [ AC]. On peut donc écrire: \overrightarrow{AB}=\dfrac12 \overrightarrow{AC}. Les vecteurs - Cours seconde maths - Tout savoir sur les vecteurs. Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires. Vecteurs colinéaires (2) Deux vecteurs sont colinéaires si et seulement si leurs directions sont parallèles. Les vecteurs \overrightarrow{u} et \overrightarrow{v} ont des directions parallèles, ils sont donc colinéaires. Soient A, B, C et D quatre points du plan. Les droites ( AB) et ( CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

I. Définition et propriétés. 1. Norme d'un vecteur. Considérons un vecteur u ⃗ \vec u du plan. On définit la norme du vecteur u ⃗ \vec u comme la "longueur" du vecteur u ⃗ \vec{u}. On la note ∥ u ⃗ ∥ \|\vec{u}\| En particulier: si u ⃗ \vec u est un vecteur tel que u ⃗ = A B → \vec u=\overrightarrow{AB} 2. Cas de deux vecteurs colinéaires. Définition: Soient u ⃗ \vec u et v ⃗ \vec v deux vecteurs colinéaires du plan. On appelle produit scalaire des vecteurs u ⃗ \vec u et v ⃗ \vec v le nombre réel noté u ⃗ ⋅ v ⃗ \vec u\cdot\vec v défini par: u ⃗ ⋅ v ⃗ = { ∥ u ⃗ ∥ × ∥ v ∥ lorsque u ⃗ et v ⃗ sont de m e ˆ me sens − ∥ u ⃗ ∥ × ∥ v ∥ lorsque u ⃗ et v ⃗ sont de sens diff e ˊ rent \vec u\cdot\vec v=\left\{ \begin{array}{ll}\|\vec u\|\times\|v\| & \textrm{ lorsque}\vec u\textrm{ et}\vec v\textrm{ sont de même sens} \\ -\|\vec u\|\times\|v\| & \textrm{ lorsque}\vec u\textrm{ et}\vec v\textrm{ sont de sens différent}\end{array} \right. 3. Lecon vecteur 1ere s 4 capital. Cas de deux vecteurs quelconques. Soient u ⃗ \vec u et v ⃗ \vec v deux vecteurs différent de 0 ⃗ \vec 0 du plan.

July 11, 2024, 7:47 am