(n + 1) α n α 0 0 ≤ vn+1 ≤ vn0. (n + 1) α n α 0 (n0 + 1) α Prenons maintenant α ∈]1, 3/2[. Par comparaison à une série de Riemann, la série de terme général (vn) converge. On vient donc de voir deux phénomènes très différents de ce qui peut se passer dans le cas limite de la règle de d'Alembert. Le second résultat est un cas particulier de ce que l'on appelle règle de Raabe-Duhamel. Exercice 8 - Un cran au dessus! - L2/Math Spé - ⋆⋆ 1. Il faut savoir que la suite des sommes partielles de la série harmonique est équivalente à ln n. On utilise ici seulement la minoration, qui se démontre très facilement par comparaison à une intégrale: 1 + 1 1 + · · · + 2 n ≥ n+1 dx = ln(n + 1). 1 x On peut obtenir une estimation précise du dénominateur également en faisant une comparaison à une intégrale. Le plus facile est toutefois d'utiliser la majoration brutale suivante: ln(n! Règle de Raabe-Duhamel — Wikipédia. ) = ln(1) + · · · + ln(n) ≤ n ln n. Il en résulte que un ≥ 1 n, et la série un est divergente. On majore sous l'intégrale. En utilisant sin x ≤ x, on obtient (on suppose n ≥ 2): 0 ≤ un ≤ La série un est convergente.

  1. Règle de raabe duhamel exercice corrigé simple
  2. Règle de raabe duhamel exercice corrigé sur

Règle De Raabe Duhamel Exercice Corrigé Simple

Ce n'est pas difficile: $\dfrac{1}{n}\epsilon_n = \dfrac{1}{n+b}-\dfrac{1}{n}=\dfrac{n+b-n}{n(n+b)}=\dfrac{1}{n}\dfrac{b}{n+b}$, donc $\epsilon_n=\dfrac{b}{n+b}$, qui tend bien vers $0$. Donc on peut tester Raabe-Duhamel: si $b-a>1$, $\displaystyle \sum u_n$ converge, si $b-a<1$, $\displaystyle \sum u_n$ diverge, et si $b-a=1$, alors on ne sait pas avec cette règle. Tiens, tiens, le cas d'indétermination est $b=a+1$, la situation de la question 1. Règle de raabe duhamel exercice corrigé sur. Comme par hasard! On voit qu'en fait, la formulation de l'exercice version Gourdon est nettement plus pédagogique: sans aucune indication, on commence par tester d'Alembert puisque ça nous demande moins de travail (juste un calcul de limite), comme ça ne marche pas, on accepte de bosser un peu plus pour appliquer Raabe-Duhamel (et donc on comprend que c'est un raffinement de d'Alembert), et ce n'est que maintenant qu'on traite le cas $b=a+1$, après avoir bien bossé, compris plein de choses d'un point de vue méthode, et compris pourquoi le cas $b=a+1$ reste à faire à part.

Règle De Raabe Duhamel Exercice Corrigé Sur

On a: un+1 un = 2n + 1 1 = 1 − 2n + 2 2n + 2. La suite un+1/un converge donc vers 1. En outre, on a: (n + 1)un+1 nun = 2n + 1 2n ≥ 1. Par conséquent, la suite nun est croissante, et comme un est positive, on a: nun ≥ u1 =⇒ un ≥ u1 n. La série de terme général (un) est divergente (minorée par une série divergente). On a de même: vn+1 vn = 2n − 1 2n D'autre part, un calcul immédiat montre que: (n + 1) α vn+1 n α vn → 1. Règle de raabe duhamel exercice corrigé simple. = 1 + 1 α 1 − n 3. 2n + 2 6 Exercices - Séries numériques - étude pratique: corrigé Effectuons un développement limité de cette quantité au voisinage de +∞ afin d'obtenir la position par rapport à 1. On a: (n + 1) α vn+1 n α vn = 1 + 2α − 3 + o(1/n). 2n + 2 Pour n assez grand, (n+1)αvn+1 nα 2α−3 − 1 a le signe de vn 2n+2, qui est négatif puisqu'on a supposé α < 3/2. Soit n0 un rang à partir duquel l'inégalité est vraie. On a, pour n > n0: On a donc obtenu: vn+1 vn0 = vn+1 vn ≤ ≤ vn−1 vn−2... vn0+1 vn0 nα (n + 1) α (n − 1) α nα... nα 0.
Une manière simple de soutenir le site: Achetez sur Amazon en passant par ce lien. C'est sans surcoût pour vous!
July 31, 2024, 12:52 am